Produkt-Details
Herkunftsort: China
Markenname: ENNENG
Zertifizierung: CE,UL
Modellnummer: PMM
Zahlungs-u. Verschiffen-Ausdrücke
Min Bestellmenge: 1 Satz
Preis: USD 500-5000/set
Verpackung Informationen: seetaugliche Verpackung
Lieferzeit: 15-120 Tage
Zahlungsbedingungen: L/C, T/T
Versorgungsmaterial-Fähigkeit: 20000 Sätze/Jahr
Name: |
elektrischer Magnetmotor |
Gegenwärtig: |
Wechselstrom |
Leistungsbereich: |
5.5-3000kw |
Frequenz: |
50/60HZ |
Eigenschaften: |
hoher Anlaufmoment, hohe Überlastbarkeit |
Leistungsfähigkeit: |
IE4 IE5 |
Material: |
Seltene Erde NdFeB |
Aufgabe: |
S1 |
Name: |
elektrischer Magnetmotor |
Gegenwärtig: |
Wechselstrom |
Leistungsbereich: |
5.5-3000kw |
Frequenz: |
50/60HZ |
Eigenschaften: |
hoher Anlaufmoment, hohe Überlastbarkeit |
Leistungsfähigkeit: |
IE4 IE5 |
Material: |
Seltene Erde NdFeB |
Aufgabe: |
S1 |
Hoher Anlaufmoment-und Überlastbarkeits-Neodym-Magnet-Motor
Frequenz
|
50Hz
|
Faktor der hohen Leistung
|
Fast 1
|
Großes beginnendes Torgue
|
2mal mehr als andere
|
Bereich der Frequenz
|
> 1:1000
|
Arbeitsmodus
|
S1
|
Kühlbetrieb
|
IC411
|
Einschließungs-Schutz-Grad
|
IP54
|
Vorteil
|
Kleine, helle, hohe Leistungsfähigkeit, lärmarm, usw.
|
Was ist der Dauermagnetsynchronmotor?
Ein P.M.-Motor ist ein Wechselstrommotor, den die Magneten benutzt, die in eingebettet werden oder zur Oberfläche des Rotors des Motors befestigt sind. Die Magneten werden benutzt, um einen konstanten Bewegungsfluß zu erzeugen, anstatt, das Ständerfeld zu erfordern, ein zu erzeugen, indem man zum Rotor, wie es der Fall ist bei einem Induktionsmotor verbindet.
Analyse des Prinzips der technischen Vorteile des Dauermagnetmotors
Das Prinzip eines Dauermagnetsynchronmotors ist, wie folgt: In der Ständerwicklung des Motors in den Dreiphasenstrom, nach Durchlauf-im Strom, bildet es ein drehendes Magnetfeld für die Ständerwicklung des Motors. Weil der Rotor mit dem Dauermagnet installiert ist, wird der Dauermagnetmagnetpol, entsprechend dem Prinzip von Magnetpolen der gleichen Phase geregelt, die unterschiedliche Abstossung, das drehende Magnetfeld anzieht, das im Ständer erzeugt wird, fährt den Rotor, um sich zu drehen, die Umdrehungsgeschwindigkeit des Rotors ist gleich der Geschwindigkeit des drehenden Pfostens produzierte im Ständer.
Wegen des Gebrauches der dauerhaften Magneten, Magnetfelder zur Verfügung zu stellen, ist der Rotorprozeß reif flexibel, zuverlässig, und an Größe, und die Entwurfskapazität kann wie zehn Watt, bis zu den Megawatt so klein sein. Gleichzeitig indem man die Anzahl von Paaren der dauerhaften Magneten des Rotors erhöht oder verringert, ist es einfacher, die Anzahl von Pfosten des Motors zu ändern, der den Drehzahlbereich von den Dauermagnetsynchronmotoren breiter macht. Mit Multipoldauermagnetrotoren kann die Nenndrehzahl wie ein einstellig so niedrig sein, die schwierig, durch gewöhnliche Asynchronmotoren zu erzielen ist.
Besonders in der langsamen starken Anwendungsumwelt, kann der Dauermagnetsynchronmotor durch einen Multipolentwurf an langsamem direkt Antrieb, verglichen mit einem gewöhnlichen Motor plus Reduzierer, die Vorteile eines Dauermagnetsynchronmotors kann hervorgehoben werden.
Unterschiede zwischen dem Dauermagnetmotor und dem Asynchronmotor:
01. Rotor-Struktur
Asynchronmotor: Der Rotor besteht einem Eisenkern und einem Wickeln, das hauptsächlich Kurzschluss sind und aus Drahtwundrotoren. Ein Kurzschlussrotor wird mit Aluminiumstangen geworfen. Das Magnetfeld der Aluminiumstange, die den Ständer schneidet, fährt den Rotor.
PMSM-Motor: Die dauerhaften Magneten werden in den Magnetpolen des Rotors eingebettet und werden gefahren, um sich zu drehen durch das drehende Magnetfeld, das im Ständer entsprechend dem Prinzip von Magnetpolen der gleichen Phase erzeugt wird, die verschiedene Abstossungen anzieht.
02. Leistungsfähigkeit
Asynchronmotoren: Müssen Sie gegenwärtiges von der Gittererregung, mit dem Ergebnis eines bestimmten Betrags des Energieverlustes, des Bewegungsblindstroms und des Faktors der geringen Energie absorbieren.
PMSM-Motor: Das Magnetfeld wird von den dauerhaften Magneten zur Verfügung gestellt, benötigt der Rotor nicht Erregerstrom, und die Bewegungs-Leistungsfähigkeit wird verbessert.
03. Volumen und Gewicht
Der Gebrauch von leistungsstarken Dauermagnetmaterialien vergrößert das Luftspaltmagnetfeld von den Dauermagnetsynchronmotoren als das von Asynchronmotoren. Der Größe und dem Gewicht werden verglichen mit Asynchronmotoren verringert. Es ist ein oder zwei Bildformate, die niedriger als Asynchronmotoren sind.
04. Motor, der Strom beginnt
Asynchronmotor: Er wird direkt durch Netzfrequenzstrom begonnen, und der beginnende Strom ist groß, der 5 bis 7mal erreichen kann der Nennstrom, der eine große Auswirkung auf das Stromnetz sofort hat. Der große beginnende Strom veranlaßt den AbleitwiderstandSpannungsabfall der Ständerwicklung sich zu erhöhen, und der Anlaufmoment ist kleines so Hochleistungsbeginnen kann nicht erzielt werden. Selbst wenn der Inverter benutzt wird, kann er innerhalb des Nennleistungsstrombereichs nur beginnen.
PMSM-Motor: Er wird durch einen engagierten Prüfer gefahren, der die Nennleistungsanforderungen des Reduzierers ermangelt. Der tatsächliche beginnende Strom ist klein, wird der Strom allmählich entsprechend der Last erhöht, und der Anlaufmoment ist groß.
05. Energie-Faktor
Asynchronmotoren haben einen Faktor der geringen Energie, sie müssen eine große Menge des Blindstroms vom Stromnetz absorbieren, verursacht der große beginnende Strom von Asynchronmotoren eine kurzfristige Auswirkung auf das Stromnetz, und langfristiger Gebrauch verursacht bestimmten Schaden der Stromnetzausrüstung und -transformatoren. Es ist notwendig, Energieausgleichseinheiten zu addieren und Blindleistungskompensation durchzuführen, um die Qualität des Stromnetzes sicherzustellen und die Kosten des Ausrüstungsgebrauches zu erhöhen.
Es gibt keinen induzierten Strom im Rotor des Dauermagnetsynchronmotors, und der Energiefaktor des Motors ist hoch, der den Qualitätsfaktor des Stromnetzes verbessert und den Bedarf beseitigt, einen Kompensator zu installieren.
06. Wartung
Asynchronmotor- + Reduziererstruktur erzeugt Erschütterung, Hitze, hohe Durchfallquote, großen Schmiermittelverbrauch und hohe manuelle Instandhaltungskosten; sie verursacht bestimmte Stillstandszeitverluste.
Der Dreiphasendauermagnetsynchronmotor fährt die Ausrüstung direkt. Weil der Reduzierer beseitigt wird, ist die Motorleistungsgeschwindigkeit niedrig, sind mechanische Geräusche niedrig, ist Körperschall klein, und die Durchfallquote ist niedrig. Das gesamte Ansteuersystem ist fast wartungsfrei.
Der Dreiphasendauermagnetsynchronmotor fährt die Ausrüstung direkt. Weil der Reduzierer beseitigt wird, ist die Motorleistungsgeschwindigkeit niedrig, sind mechanische Geräusche niedrig, ist Körperschall klein, und die Durchfallquote ist niedrig. Das gesamte Ansteuersystem ist fast wartungsfrei.
Wellenform Zurück-emf
Zurück ist emf, kurz für zurück elektromotorische Kraft aber ist alias die anti-elektromotorische Kraft. Die elektromotorische Kraft der Rückseite ist die Spannung, die in den Elektromotoren auftritt, wenn es eine relative Bewegung zwischen den Ständerwicklungen und dem Magnetfeld des Rotors gibt. Die geometrischen Eigenschaften des Rotors bestimmen die Form der Wellenform zurück-emf. Diese Wellenformen können durchschnittliches etwas sein sinusförmig, trapezoid, dreieckig, oder.
erzeugen Induktion und P.M.-Maschinen Wellenformen zurück-emf. In einer Induktionsmaschine verfällt die Wellenform zurück-emf, wie das Restrotorfeld langsam wegen des Fehlens von einem Ständerfeld verfällt. Jedoch mit einer P.M.-Maschine, erzeugt der Rotor sein eigenes Magnetfeld. Deshalb kann eine Spannung in den Ständerwicklungen verursacht werden, wann immer der Rotor in der Bewegung ist. Spannung Zurück-emf steigt linear mit Geschwindigkeit und ist ein entscheidender Faktor, wenn sie maximale Arbeitsgeschwindigkeit bestimmt.
Warum Dauermagnetwechselstrommotoren wählen Sie?
Dauermagnet-Motoren Wechselstroms (PMAC) bieten einige Vorteile über anderen Arten Motoren an und umfassen:
Hohe Leistungsfähigkeit: PMAC-Motoren liegen an der Abwesenheit von Rotorkupferverlusten und Verluste zu wickeln verringert in hohem Grade, leistungsfähiges. Sie können Leistungsfähigkeit von bis 97%, mit dem Ergebnis des bedeutenden Energiesparens erzielen.
Dichte der hohen Leistung: PMAC-Motoren haben eine höhere Energiedichte, die mit anderen Bewegungsarten verglichen wird, denen Durchschnitte sie mehr Energie pro Einheit der Größe und des Gewichts produzieren können. Dieses macht sie ideal für Anwendungen, in denen Raum begrenzt ist.
Drehmomentstarke Dichte: PMAC-Motoren haben eine drehmomentstarke Dichte, der Durchschnitte sie mehr Drehmoment pro Einheit der Größe und des Gewichts produzieren können. Dieses macht sie ideal für Anwendungen, in denen drehmomentstark, wird angefordert.
Verringerte Wartung: Da PMAC-Motoren keine Bürsten haben, erfordern sie weniger Wartung und haben eine längere Lebensdauer als andere Bewegungsarten.
Verbesserte Steuerung: PMAC-Motoren haben die bessere Geschwindigkeits- und Drehmomentsteuerung, die mit anderen Bewegungsarten verglichen wird und machen sie ideal für Anwendungen, in denen genaue Steuerung angefordert wird.
Umweltfreundlich: PMAC-Motoren sind umweltfreundlicher als andere Bewegungsarten, da sie seltene Erdmetalle benutzen, die einfacher sind-, weniger Abfall aufzubereiten und zu produzieren, der mit anderen Bewegungsarten verglichen wird.
Gesamt-, die Vorteile von PMAC-Motoren sie eine ausgezeichnete Wahl für eine breite Palette von Anwendungen, einschließlich Elektro-Mobile, Industriemaschinen und Systeme der erneuerbaren Energie treffen.
SPM gegen IPM
Ein P.M.-Motor kann in zwei Hauptkategorien getrennt werden: Oberflächendauermagnetmotoren (SPM) und Innendauermagnetmotoren (IPM). Weder enthält Bewegungskonstruktionstyp Rotorstangen. Beide Arten erzeugen magnetischen Fluss durch die dauerhaften Magneten, die zu hinzugefügt werden oder Innere des Rotors.
SPM-Motoren haben die Magneten, die zum Äußeren der Rotoroberfläche hinzugefügt werden. Deswegen ist mechanische Montage, ihre mechanische Festigkeit schwächer als die von IPM-Motoren. Die geschwächte mechanische Festigkeit begrenzt die maximale sichere mechanische Geschwindigkeit des Motors. Darüber hinaus stellen diese Motoren sehr begrenztes magnetisches saliency aus (Ld-≈ LQ). Induktanzwerte maßen an den Rotoranschlüssen sind konsequent unabhängig davon die Rotorposition. Wegen des nahen Einheit saliency Verhältnisses beruhen SPM-Bewegungsentwürfe erheblich, wenn nicht vollständig, auf der magnetischen Drehmomentkomponente, um Drehmoment zu produzieren.
Ipm-Motoren haben ein Dauermagnet eingebettet in den Rotor selbst. Anders als ihre SPM-Gegenstücke stellt der Standort der dauerhaften Magneten IPM-Motoren sehr mechanisch solid her, und passend für bei sehr hohen Geschwindigkeiten funktionieren. Diese Motoren auch werden durch ihr verhältnismäßig hohes magnetisches saliency Verhältnis definiert (LQ > Ld). Wegen ihres magnetischen saliency, hat ein IPM-Motor die Fähigkeit, Drehmoment zu erzeugen, indem er die magnetischen und Abneigungsdrehmomentkomponenten des Motors nutzt.
P.M.-Bewegungsstrukturen können in zwei Kategorien getrennt werden: Innen- und Oberflächen. Jede Kategorie hat seine Teilmenge Kategorien. Ein Oberflächen-P.M.-Motor kann seine Magneten oder die Einfügung in die Oberfläche des Rotors an haben, zum der Robustheit des Entwurfs zu erhöhen. Die Innendauermagnetbewegungspositionierung und -entwurf können sich weit unterscheiden. Die Magneten des IPM-Motors können die Einfügung als großer Block oder geschwankt sein, während sie näher an dem Kern kommen. Eine andere Methode ist, sie in einem Speichenmuster einbetten zu lassen.
Schwanzlose Dauermagnet Motoren (P.M.) funktionieren mit einer Wechselstrom-Stromversorgung so gekennzeichnet häufig als PMAC-Motoren. Der Gebrauch der dauerhaften Magneten beseitigt den Bedarf an den Rotorverlusten der Leiter (Rotorstangen) so wird beseitigt. Dieser Entwurf macht es möglich, die hohe Leistungsfähigkeit zu kombinieren, die langsam und in einem einzelnen Paket drehmomentstark ist. Für kleine Bewegungsgrößen die Leistungsfähigkeit des P.M.-Motors ist- möglicherweise 10% bis 15% größer als älter, Standard-leistungsfähigkeits-Motoren am gleichen Ladepunkt. Diese Leistungsfähigkeits-Gewinne halten über der gesamten Strecke der typischen Bewegungslasten.
Dauermagnetdemagnetization
Dauerhafte Magneten sind kaum dauerhaft und haben begrenzt Fähigkeiten. Bestimmte Kräfte können auf diese Materialien ausgeübt werden, um sie zu entmagnetisieren. Das heißt, ist es möglich, die magnetischen Eigenschaften des Dauermagnetmaterials zu entfernen. Eine dauerhafte magnetische Substanz kann entmagnetisiert werden, wenn das Material erheblich belastet ist, gedurft bedeutende Temperaturen erreichen, oder wird durch eine große elektrische Störung ausgewirkt.
Zuerst wird das Belasten ein Dauermagnet gewöhnlich mit körperlichen Mitteln getan. Ein magnetisches Material kann entmagnetisiert werden, wenn es nicht geschwächt wird, wenn es, heftige Auswirkungen/Fälle zu erfahren war. Ein ferromagnetisches Material hat inhärentes magnetisches Eigentum. Jedoch können diese magnetischen Eigenschaften in jede mögliche Vielzahl Richtungen ausstrahlen. Eine Möglichkeit, die ferromagnetische Materialien magnetisiert werden, ist, indem sie ein starkes Magnetfeld am Material anwendet, um seine magnetischen Dipole auszurichten. Anpassung diese Dipolkräfte das Magnetfeld des Materials in ein spezifisches Bad. Eine heftige Auswirkung kann die Atomausrichtung der magnetischen Gebiete des Materials entfernen, die die Stärke des beabsichtigten Magnetfelds schwächt.
Zweitens können Temperaturen ein Dauermagnet auch beeinflussen. Temperaturkraft die Magnetteilchen in einem Dauermagnet, zum aufgeregt zu werden. Die magnetischen Dipole haben die Fähigkeit, irgendeiner Menge thermischer Bewegung zu widerstehen. Jedoch können lange Zeitspannen der Bewegung die Stärke eines Magneten schwächen, selbst wenn bei Zimmertemperatur gespeichert. Darüber hinaus haben alle magnetischen Materialien eine Schwelle, die als die „Curie-Temperatur bekannt ist,“ ist die eine Schwelle, die die Temperatur definiert, bei der die thermische Bewegung das Material veranlaßt, vollständig zu entmagnetisieren. Ausdrücke wie Koerzitivkraft und Remanenz werden verwendet, um magnetische Materialfestigkeitszurückhaltenfähigkeit zu definieren.
Schließlich können große elektrische Störungen ein Dauermagnet veranlassen zu entmagnetisieren. Diese elektrischen Störungen können vom Material sein, das auf ein großes Magnetfeld einwirkt oder, wenn ein großer Strom durch das Material geführt wird. Viel ebenso können ein starkes Magnetfeld oder ein Strom benutzt werden, um die materiellen magnetischen Dipole, ein anderes starkes Magnetfeld oder Strom auszurichten, die am Feld angewendet wird, das durch das Dauermagnetdosenergebnis im Demagnetization erzeugt wird.